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Abstract. Three variants of mean field methods for atomic and nuclear reactions are compared with
respect to both conception and applicability: The time–dependent Hartree–Fock method solves the equation
of motion for a Hermitian density operator as initial value problem, with the colliding fragments in a
continuum state of relative motion. With no specification of the final state, the method is restricted to
inclusive reactions. The time–dependent mean field method, as developed by Kerman, Levit and Negele as
well as by Reinhardt, calculates the density for specific transitions and thus applies to exclusive reactions.
It uses the Hubbard–Stratonovich transformation to express the full time–development operator with two–
body interactions as functional integral over one–body densities. In stationary phase approximation and
with Slater determinants as initial and final states, it defines non–Hermitian, time–dependent mean field
equations to be solved self–consistently as boundary value problem in time. The time–independent mean
field method of Giraud and Nagarajan is based on a Schwinger–type variational principle for the resolvent.
It leads to a set of inhomogeneous, non–Hermitian equations of Hartree–Fock type to be solved for given
total energy. All information about initial and final channels is contained in the inhomogeneities, hence
the method is designed for exclusive reactions. A direct link is established between the time–dependent
and time–independent versions. Their relation is non–trivial due to the non–linear nature of mean field
methods.

PACS. 03.65.Nk Nonrelativistic scattering theory – 24.10.-i Nuclear-reaction models and methods –
34.10.+x General theories and models of atomic and molecular collisions and interactions (including
statistical theories, transition state, stochastic and trajectory models, etc.)

1 Similarities and differences

After the success which mean field methods have had for
bound state problems in various fields of physics, it was
only natural to try the mean field concept for scatter-
ing states as well. The original attempt in this direction
is the time–dependent Hartree–Fock method (TDHF) de-
veloped about 20 years ago [1]. In this method one solves
the equation of motion for the one–body density operator
ρ = ρ(t),

ih̄
∂

∂t
ρ = [h, ρ], (1.1)

with an initial condition for ρ,

ρ(ti) = ρi, (1.2)

describing an unbound state of relative motion of the col-
liding fragments. The density operator ρ can be repre-
sented in just one basis of single–particle states ψm(t),

ρ =
N∑
m=1

| ψm(t) >< ψm(t) | (1.3)

for N particles and with ψm(t) orthonormalized. The
single–particle Hamiltonian h is Hermitian and has stan-
dard Hartree–Fock structure, h = t + u with mean field
potential

u =
N∑
m=1

< · ψm(t)|v| · ψm(t) >, (1.4)

where the dots represent wave functions of some arbitrary
single–particle basis. The single–particle states ψm(t) are
determined from the time–dependent Hartree–Fock equa-
tions

ih̄
∂

∂t
|ψm(t) >= h|ψm(t) > (1.5)

with initial conditions

ψm(ti) = χm for m = 1, 2, ...N. (1.6)

Standard manipulation of eq. (1.5) and its Hermitian ad-
joint leads to eq. (1.1), with initial condition (1.2) corre-
sponding to (1.6). In practice, the non–linear equations
(1.1) and (1.5), respectively, are solved by iteration: A set
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of N occupied orbitals is used to compute the potential
u. With the corresponding solutions of (1.1) or (1.5) one
recalculates u till self–consistency is reached. As each iter-
ation step requires as input only the set of N functions ψm
at fixed time t, the TDHF method as initial value problem
is ”local” in time.

From the densities ρb(r, t) according to (1.1) and (1.2),
taken at various classical impact parameters b, one may
calculate a classical cross section. Although it can generate
nice snapshots of the density distribution during the scat-
tering process, the method has two problems: First, as ini-
tial value problem it can at best handle inclusive reactions,
since no specification of a final channel enters the formal-
ism. The second, more serious problem concerns ”spurious
cross channel correlations”: Starting from the determinant
Ψ(ti) corresponding to ρi the method generates a single
determinant Ψ(t). Due to the non–linear nature of the
TDHF equations, this determinant Ψ(t) continues to vary
as time goes to infinity. Hence, if this wave function is ex-
panded in an orthogonal set of channel wave functions, the
expansion coefficients will not be constant asymptotically.
Thus an S–matrix, constructed by projecting the TDHF
wave functions onto channel wave functions, would not be
constant in time [2].

The time–dependent mean field method (TDMF) [3,
4] also uses an equation of motion like (1.1),

ih̄
∂

∂t
ρ = [h, ρ], (1.7)

however, there are two important differences:
1. The density operator ρ of (1.7) is expanded in two

sets of mutually biorthogonal single–particle functions,

ρ =
N∑
m=1

| ψm(t) >< ψ̃m(t) |
< ψ̃m(t)|ψm(t) >

, (1.8)

and the Hamiltonian h = t+ u with mean field potential

u =
N∑
m=1

< · ψ̃m(t)|v| · ψm(t) >
< ψ̃m|ψm >

(1.9)

is non–Hermitian in general.
2. Eq.(1.7) has to be solved self–consistently as

boundary problem in time t, fixing

ρ(ti) = ρi and ρ(tf ) = ρf . (1.10)

The single–particle functions ψm(t) are obtained from

ih̄
∂

∂t
|ψm(t) >= h|ψm(t) > (1.11)

by forward propagation of initial wave functions

ψm(ti) = χm for m = 1, 2, ...N. (1.12)

Analogously ψ̃m(t) results from

−ih̄ ∂
∂t

< ψ̃m(t)| =< ψ̃m(t)|h (1.11’)

by backward propagation of

ψ̃m(tf ) = χ
′

m for m = 1, 2, ...N. (1.12’)

Combining (1.11) and (1.11’) in the usual way, one obtains
(1.7) with conditions (1.10) from (1.12), (1.12’). One also
proves easily that

∂

∂t
< ψ̃m|ψn >= 0, (1.13)

hence if ψ̃m, ψn are chosen biorthogonal at t = ti, they
will remain so at any time. In general, ψ̃m and ψm will be
not complex–conjugate to each other, and ρ will be non–
Hermitian. Only when χ

′
m is generated from χm by the

mean field time development operator Uh(tf−ti), we have
ψ̃m(t) = ψ∗m(t) in which case TDMF reduces to TDHF
with just one set of single–particle functions. (1.7), (1.10)
as well as the coupled eqs. (1.11), (1.11’) together with
(1.12), (1.12’) constitute a boundary condition problem in
which the time plays a role similar to that of the spatial
coordinates [5].

In practice, one may try to solve this problem self–
consistently in analogy to the static Hartree–Fock prob-
lem by iteration [5] which involves an initial guess of the
single–particle functions ψ̃m(t), ψm(t) for all times t be-
tween ti and tf . In this sense, the TDMF boundary condi-
tion problem is highly ”non–local” in the variable t. Since
initial and final states are taken care of, the method is able
to describe also exclusive reactions: Each quantum pro-
cess, leading from given initial state χ to some final state
χ
′
, has its own time–dependent mean field assigned. It has

been proven [2] that, within the framework of TDMF, an
S–matrix can be defined which becomes asymptotically
constant. The problem with the TDMF approach lies in
the above non–locality in time, for which there seems to
exist no practicable algorithm for actual numerical calcu-
lations of (3 + 1)–dimensional systems.

Some comments on the lack of Hermiticity of ρ and
of h(ρ) are in order. This non–Hermitian structure is of
a special type which preserves the usual properties of a
single–particle density matrix connected to a Slater de-
terminant. From the explicit expression (1.8) we have im-
mediately

Trρ = N and ρ2 = ρ, (1.14)

hence particle number is fixed and ρ is a projector on the
space of occupied orbitals. Moreover, |ψm > and < ψ̃m|
are right and left eigenstates of ρ,

ρ|ψm(t) >= Nm|ψm(t) >;

< ψ̃m(t)|ρ =< ψ̃m(t)|Nm (1.15)

with eigenvalues

Nm =
{

1 for m occupied
0 otherwise . (1.16)

The eigenvalues of h(ρ) will be complex in general, hence
ψm and ψ̃m correspond to quasi–particles of finite life-
time. They represent intermediate states which the sys-
tem passes during the reaction process. The S–matrix of
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the mean field approach will always violate unitarity, irre-
spective of the fact whether h(ρ) is Hermitian or not: The
S–operator depends on ρ which in turn depends on the
initial and final states of a specific reaction as mentioned
above. Each quantum process χ → χ

′
has its own mean

field, calculated without reference to any other possible
process.

An alternative to TDMF is the time–independent
mean field method (TIMF) based on a Schwinger–type
variational principle [6, 7] as described below in Sect. 2.
Like TDMF it uses two sets of variational functions and
leads to a set of inhomogeneous equations for the single–
particle functions ϕ

′
i, ϕi which may be chosen biorthogo-

nal. The corresponding density operator

ρ =
N∑
i=1

| ϕi >< ϕ
′
i |

< ϕ
′
i | ϕi >

(1.17)

obeys an inhomogeneous equation,

[h, ρ] = η(ρχ′ − ρχ);

η = E − < φ
′ | H | φ >

< φ′ | φ > , (1.18)

where E is the total energy of the system, φ, φ
′

are
Slater determinants built from the single–particle func-
tions ϕi, ϕ

′
i and ρχ′ , ρχ are ”mixed” densities containing

all information about initial and final states χ, χ
′
. Hence

the method can describe exclusive reactions. As in TDMF
h is non–Hermitian,

h =
N∑
i=1

< · ϕ′i|v| · ϕi >
< ϕ

′
i|ϕi >

, (1.19)

but now of course time–independent as are the single–
particle functions ϕi, ϕ

′
i. Their self–energies ηi are complex

in general due to the lack of Hermiticity of h. As regards
its practical applicability [8], TIMF is much simpler than
TDMF: One has to solve inhomogeneous, complex equa-
tions of Hartree–Fock type at some given energy E. In
this respect TIMF is comparable to TDHF: While TDHF
is ”local” in time, TIMF is ”local” in energy.

In view of the above similarities and differences of
time–dependent and time–independent mean field meth-
ods (see Table 1), it appears desirable to establish a direct
link between TDMF and TIMF. Their relation is non–
trivial due to the non–linear nature of mean field meth-
ods.

The paper is organized as follows: In Sect. 2 we shall
derive matrix elements of the resolvent operator as sta-
tionary values of a Schwinger–type functional in mean
field approximation. Its stationarity conditions are given
by the TIMF equations (1.17) and (1.18). To calculate
matrix elements of the exact time–development opera-
tor we use a path integral representation based on the
Hubbard–Stratonovich transformation (Sect. 3). Ambigui-
ties of the respective auxiliary fields σ are briefly discussed
in Sect. 4, following [9]. The mean field approximation of

the time–development operator is then obtained by ap-
plying the stationary phase approximation to the path
integrals over the auxiliary fields σ in Sect. 5. The re-
sult is the boundary condition problem for ρ, eqs. (1.7)
to (1.10), of the TDMF method. The link between the
two methods is obtained in two steps: First, in static ap-
proximation of TDMF (Sect. 6) we can introduce single–
particle propagators gm = (wm−h(σ))−1 by Fourier trans-
formation of the corresponding time–development opera-
tor exp{− i

h̄h(σ)T}. Second, the Fourier integrals over wm
are solved in stationary phase approximation on the same
footing (Sect. 7) as the path integrals over the static aux-
iliary fields σ. Thus the integrals over real variables wm
are replaced by the integrand at some complex values w◦m
which are identified in Sect. 9 as the self–energies ηm of
TIMF after the T–integration has been carried out (Sect.
8). At the same time one reproduces the TIMF value of
the resolvent. In conclusion (Sect. 9): TIMF turns out to
be a static approximation of TDMF in semi–classical ap-
proximation.

2 Resolvent operator in mean field
approximation

The TIMF method solves the stationarity eqs. of a func-
tional like [6, 7]

F (Ψ
′
, Ψ) = < χ

′ |Ψ > + < Ψ
′ |χ >

− < Ψ
′ |(E −H)|Ψ > (2.1)

which read

(E −H)|Ψ >= |χ > ;< Ψ
′ |(E −H) =< χ

′ | (2.2)

with χ, χ
′

as initial and final states. The resolvent matrix
element between χ and χ

′
is then given by

< χ
′ |(E −H)−1|χ >=< χ

′ |Ψ >=< Ψ
′ |χ > . (2.3)

In mean field approximation one takes χ, χ
′

as Slater de-
terminants,

χ = A
N∏
i=1

χi ;χ
′

= A
N∏
i=1

χ
′

i , (2.4)

and the variational functions Ψ, Ψ
′

are correspondingly re-
stricted to Slater determinants as well,

φ = A
N∏
i=1

ϕi ;φ
′

= A
N∏
i=1

ϕ
′

i . (2.5)

The antisymmetrizer A is defined as A =
(N !)−

1
2
∑
P

(−)PP . One then has to vary

F (φ
′
, φ) = < χ

′ |φ > + < φ
′ |χ >

− < φ
′ |(E −H)|φ > . (2.6)
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To calculate F (φ
′
, φ) and its functional derivatives, one

can use the invariance of the above four determinants un-
der unitary transformation of their orbitals in order to
diagonalize the four N–dimensional matrices < χ

′
i | ϕj >,

< ϕ
′
i | χj >,< ϕ

′
i | ϕj > and < ϕ

′
i | h | ϕj >. Here

h = t + u is the single–particle Hamiltonian with u the
Hartree–Fock potential in the biorthogonal basis ϕ

′
i, ϕj .

In this representation the stationarity equations of (2.6)
read:

(ηi − h) | ϕi >= λi | χi >;

< ϕ
′

i | (ηi − h) =< χ
′

i | λ
′

i (2.7)

with complex self–energies

ηi = E − < φ
′ | H | φ >

< φ′ | φ > +
< ϕ

′
i | h | ϕi >

< ϕ
′
i | ϕi >

. (2.8)

The stationary value of F (φ
′
, φ) is then

Fstat = < χ
′ | φ >=< φ

′ | χ >
=
∏
i

λi < χ
′

i | gi | χi >

=
∏
i

λ
′

i < χ
′

i | gi | χi > (2.9)

with single–particle propagators

gi = (ηi − h)−1. (2.10)

The explicit form of λi, λ
′
i – which we shall need in the

following – is

λi =
< φ

′ | χ >
< φ′ | φ > ·

< ϕ
′
i | ϕi >

< ϕ
′
i | χi >

;

λ
′

i =
< χ

′ | φ >
< φ′ | φ > ·

< ϕ
′
i | ϕi >

< χ
′
i | ϕi >

. (2.11)

They are related to each other and to η of (1.18): From
(2.11) and (2.9) one finds

∏
i

λi =

(
< φ

′ | χ >
< φ′ | φ >

)N−1

=

(
< χ

′ | φ >
< φ′ | φ >

)N−1

=
∏
i

λ
′

i. (2.12)

Furthermore
ηN−1 =

∏
i

λi =
∏
i

λ
′

i, (2.13)

as is easily seen: Scalar multiplication of (2.7) by < ϕ
′
i |

and | ϕi >, respectively, gives together with (1.8) and
(2.8):

η = E − < φ
′ | H | φ >

< φ′ | φ > = ηi −
< ϕ

′
i | h | ϕi >

< ϕ
′
i | ϕi >

= λi
< ϕ

′
i | χi >

< ϕ
′
i | ϕi >

= λ
′

i

< χ
′
i | ϕi >

< ϕ
′
i | ϕi >

(2.14)

and with (2.11)

η =
< φ

′ | χ >
< φ′ | φ > =

< χ
′ | φ >

< φ′ | φ >. (2.15)

Combining (2.12) and (2.15) then results in (2.13).
It is now easy to obtain an equation for the density

operator

ρ =
N∑
i=1

| ϕi >< ϕ
′
i |

< ϕ
′
i | ϕi >

, (2.16)

using biorthogonality but leaving the normalization of the
single–particle functions open. The dyadic product of (2.7)
with < ϕ

′
i | and | ϕi > from right and left, respectively,

gives

(ηi − h) | ϕi >< ϕ
′

i |= λi | χi >< ϕ
′

i |;
| ϕi >< ϕ

′

i | (ηi − h) =| ϕi >< χ
′

i | λ
′

i. (2.17)

Dividing by the norm < ϕ
′
i | ϕi >, summing over i and

forming the difference finally results in:

[h, ρ] = η(ρχ′ − ρχ), (2.18)

if one defines the ”mixed” densities

ρχ′ =
N∑
i=1

| ϕi >< χ
′
i |

< χ
′
i | ϕi >

;

ρχ =
N∑
i=1

| χi >< ϕ
′
i |

< ϕ
′
i | χi >

(2.19)

and uses (2.14). This constitutes the proof of (1.18).

3 Path integral representation of the
time–development operator

If a state χ is prepared at time ti, then it will develop with
time upto t = tf as

|χ(tf ) >= U(tf − ti)|χ > (3.1)

with

U(tf − ti) = exp
{
− i
h̄

(tf − ti)H
}
. (3.2)

The probability of finding some state | χ′ > at t = tf is
then obtained from the amplitude

< χ
′ |χ(tf ) >=< χ

′ |U(tf − ti)|χ > . (3.3)

An exact representation of the time–development oper-
ator of the many–body problem in terms of a time–
dependent single–particle Hamiltonian can be achieved
by the Hubbard–Stratonovich transformation. To this end
one rewrites the full Hamiltonian H in terms of operators
[3]

ραγ = a†αaγ (3.4)
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in arbitrary orthonormal basis as

H =
∑
α,γ

Kαγραγ +
1
2

∑
α,β,γ,δ

ραγvαβγδρβδ (3.5)

with matrix elements

vαβγδ =
∫∫

d3rd3r
′
ϕ?α(r)ϕ?β(r

′
)v(r, r

′
)ϕγ(r)ϕδ(r

′
)

= (αβ|v|γδ), (3.6)

tαγ =
∫
d3rϕ?α(r)tϕγ(r) and

Kαγ = tαγ −
1
2

∑
β

vαββγ

in that basis. Whenever possible, we shall use the matrix
notation

H = K · ρ+
1
2
ρ · v · ρ (3.7)

to avoid cumbersome labels and summations. The unphys-
ical self–interaction term in (3.6), combined with the ki-
netic energy tαγ into Kαγ , arises from anticommuting cre-
ation and annihilation operators in the standard form of
H such that the density operator representation (3.5) fol-
lows. We shall come back to this point in Sect. 4. One then
employs the Gaussian trick in its complex version,

exp
{
− i

2
b ·A · b

}
=
√

detA−1

∫  L∏
j=1

dxj√
2πi


× exp

{
+
i

2
x ·A−1 · x− ib · x

}
, (3.8)

to the time development operator (3.2), identifying the
density operator ρ with b. Relation (3.8) is valid if matrix
A is real, symmetric and invertible.

The Gaussian trick (3.8) cannot be applied immedi-
ately to the two–body part of H in equation (3.5), since
the one–body and two–body parts of H do not commute.
This non–commutativity is treated the standard way by
dividing the time–interval (tf − ti) in (3.2) into M slices
of equal length ε = (tf − ti)/M . Then we can factorize for
ε→ 0,

exp
{
− i
h̄
εH

}
= exp

{
− i
h̄
εK · ρ

}
× exp

{
− i

2h̄
ερ · v · ρ

}
, (3.9)

and we may now apply (3.8) to linearize the second factor
of (3.9) in ρ:

exp
{
− i

2h̄
ερ · v · ρ

}
=
√

det(
ε

h̄
v−1)

∫ (∏
α,γ

dσαγ√
2πi

)

× exp
{
i

2h̄
εσ · v−1 · σ − i

h̄
εσ · ρ

}
.

(3.10)

For each operator ραγ we have to introduce a real variable
σαγ . Choosing

σ̃ = σ · v−1, (3.11)
we may also write

exp
{
− i

2h̄
ερ · v · ρ

}
=
√

det(
ε

h̄
v)
∫ (∏

α,γ

dσ̃αγ√
2πi

)

× exp
{
i

2h̄
εσ̃ · v · σ̃ − i

h̄
εσ̃ · v · ρ

}
(3.12)

as useful alternative to (3.10). While σ̃ has the quality of
a density, σ has that of a potential.

Matrix v of equation (3.6) is symmetric in particle co-
ordinates r, r

′
and thus in the label pairs (α, γ) and (β, δ).

Hence v fulfills the symmetry requirement on A in formula
(3.8).

Repeating the above step for each time–interval, la-
belled by index k in the following, we can write for the
time–evolution operator (3.2) with (3.10):

exp
{
− i
h̄

(tf − ti)H
}

=
∫ ( M∏

k=1

√
det(

ε

h̄
v−1)

∏
α,γ

dσαγ(k)√
2πi

)

× exp

{
i

2h̄
ε
M∑
k=1

σ(k) · v−1 · σ(k)

}

×
M∏
k=1

exp
{
− i
h̄
ε (K + σ(k)) · ρ

}
. (3.13)

To prepare the next step we note that from (3.10)(
det(

ε

h̄
v−1)

)− 1
2

=
∫ (∏

α,γ

dσαγ√
2πi

)

× exp
{
i

2h̄
εσ · v−1 · σ

}
. (3.14)

We may now take the limit ε → 0,M → ∞ such that
εM = (tf − ti) remains finite, replacing in (3.13)

ε
M∑
k=1

· · · −→
tf∫
ti

dt · · · . (3.15)

Then (3.13) reads as functional integral, using the Trotter
formula,

exp
{
− i
h̄

(tf − ti)H
}

=
1
N

∫ (∏
α,γ

Dσαγ√
2πi

)

× exp

 i

2h̄

tf∫
ti

dtσ(t) · v−1 · σ(t)


×T [exp

− ih̄
tf∫
ti

dt(K + σ(t)) · ρ

] (3.16)
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where T denotes time–ordering and the norm

N =
∫ (∏

α,γ

Dσαγ√
2πi

)

× exp

 i

2h̄

tf∫
ti

dtσ(t) · v−1 · σ(t)

 (3.17)

depends still on T = tf−ti, i.e.N = N (T ). As short–hand
notation we shall use in the following

<χ
′ |U(T )|χ> =

1
N

∫
Dσ exp

{
i

2h̄

∫
dtσ(t) · v−1 · σ(t)

}
× < χ

′ |Uσ(T )|χ >, (3.18)

N =
∫
Dσ exp

{
i

2h̄

∫
dtσ(t) · v−1 · σ(t)

}
,

and

Uσ(T ) = T [exp
{
− i
h̄

∫
dthσ(t)

}
]

with single–particle Hamiltonian

h (σ(t)) = hσ(t) = (K + σ(t)) · ρ. (3.19)

The time–ordering operator T is necessary since in general

[hσ(t), hσ′ (t
′
)] 6= 0. (3.20)

In (3.18) we have represented the time–evolution opera-
tor of a system with time–independent two–body inter-
action as superposition of time–evolution operators with
time–dependent single–particle Hamiltonian hσ(t) defined
through some collective field σ(t). The superposition, be-
ing written as functional integral, contains the typical
Gaussian weight factor in the field σ.

4 Ambiguities of the auxiliary field

There are two sources of ambiguity or, positively put, of
freedom in the choice of the auxiliary field σ(t) [3, 9]:

1. There are various ways to divide the Hamiltonian
into one– and two–body parts,

H = T + V = (T + U) + (V − U) = H0 +H
′
, (4.1)

a fact well–known from the static shell model. All such
versions are equivalent in an exact treatment, however, ap-
proximate schemes of calculating physical quantities will
obviously lead to different results.

With the choice (3.4) for the density operator ρ, the
mean field σ, determined in lowest order of the stationary
phase approximation to the functional integral (3.18), is of
Hartree type. The Fock term appears only after quadratic
corrections are taken into account. In contrast, choosing
ραδ = a†αaδ as density operator in (3.5), one obtains in
lowest order the Fock–term only which in turn is corrected

in second order by the Hartree–term. With ∆†αβ = a†αa
†
β

and ∆δγ = aγaδ it is possible to introduce pairing fields
in lowest order.

All told, the solutions σ of the stationary phase ap-
proximation just define a starting point for higher orders
of the stationary phase approximation. Their convergence
rate will, of course, depend on the choice of the starting
point.

2. The second ambiguity lies at the core of the func-
tional integral representation introduced in Sect. 3. In the
expansion of the second term in the exponent of (3.12),

exp
{
− i
h̄
εσ̃ · v · ρ

}
= 1− i

h̄
εσ̃ · v · ρ

− ε2

2h̄2 (σ̃ · v · ρ)2 · · · , (4.2)

the linear term does not contribute to the integral as it
is odd. The contribution of (4.2) to the integral in (3.12)
stems from the quadratic term in (4.2) which actually is
of order ε, since with the Gaussian weight factor the dom-
inant values of σ̃ are of order ε−

1
2 . We may, therefore,

arbitrarily modify the coefficient of the term linear in σ̃ in
(4.2), without changing the value of the integral (3.12). If
we choose this coefficient as

Wαβγδ = vαβγδ − vαβδγ , (4.3)

then we will have included both Hartree and Fock terms
already in lowest order stationary phase approximation
(SPA).

This linear term is important when one determines the
stationary value σ̃◦ of the integrand in (3.12), but does not
contribute to the integral (3.12) or finally the functional
integral in σ̃ corresponding to (3.18). Conversely the σ̃–
quadratic terms in (4.2) do not influence the stationary
value of σ̃, however, they must be taken into account when
the functional integral over the fluctuations around σ̃◦ is
calculated.

5 Stationary phase approximation

To evaluate the integrals in (3.18), we shall use the station-
ary phase approximation (SPA). We illustrate the method
for a real, one–dimensional integral

I(l) =

∞∫
−∞

dx exp(−f(x)/l). (5.1)

For small l the integral is dominated by the stationary
points of f(x). If there is only one solution f

′
(x0) = 0,

then expansion of f(x) upto second order in (x−x0) gives

I(l) = exp(−f(x0)/l) (5.2)

×


∞∫
−∞

dx exp
(
− (x− x0)2

2l
f
′′
(x0)± · · ·

)
≈ exp(−f(x0)/l)

√
2πl

f ′′(x0)
,
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assuming a minimum (f
′′
(x0) > 0). The complex variant

of (5.1), (5.2), extended to the multi–dimensional case,
will be applied to the integral (3.18). The role of the small
parameter l is then taken by h̄. Hence the use of (5.2)
implies a semi–classical expansion.

Rewriting (3.18) as

< χ
′ |U(T )|χ >=

1
N

∫
Dσ exp

{
i

h̄
S[σ(t)]

}
(5.3)

with

S =
1
2

tf∫
ti

dtσ(t) · v−1 · σ(t)− ih̄

× ln < χ
′ |T [exp(− i

h̄

tf∫
ti

dthσ(t))]|χ >, (5.4)

the saddle point condition for the functional S,

δS

δσαγ(t)
= 0 for all α, γ, (5.5)

reads explicitly, in matrix notation,

σ◦(t) · v−1 =
< χ

′ |Uσ◦(tf , t)ρUσ◦(t, ti)|χ >
< χ′ |Uσ◦(tf , ti)|χ >

(5.6)

with Uσ◦(t
′′
, t
′
) the time–development operator under the

single–particle Hamiltonian hσ◦(t). Note that σ◦ will in
general be complex, although the σ–fields were originally
introduced as real integration variables. If we take χ

′
, χ

as Slater determinants and generate χ
′

as

|χ′ >= Uσ◦(tf , ti)|χ >, (5.7)

then (5.6) simplifies to the TDHF mean field

σ◦(t) =
< χ|Uσ◦(ti, t)ρUσ◦(t, ti)|χ >

< χ|χ > · v (5.8)

which refers to the initial time ti only.
The value of the functional integral (5.3) with action

S from (5.4) is in lowest order

< χ
′ |U(T )|χ > = exp

{
i

2h̄

∫
dtσ◦(t) · v−1 · σ◦(t)

}
× < χ

′ |Uσ◦(T )|χ > . (5.9)

The norm N (T ) is canceled by the quadratic correction
term corresponding to (5.2), if we ignore the second term
in S, eq. (5.4). This term carries an ih̄–factor which makes
it weakly oscillating compared to the first term. This term,
dropped in (5.9), generates the Fock term if one starts
from the original version of (3.4) and (3.5) with Hartree
term only, and it cancels the self–interaction term in (3.6).
It also reproduces correlations of the random phase ap-
proximation [3].

Taking χ, χ
′

as Slater determinants, the equation of
motion for the density operator is obtained from (3.18),
(3.19) and (5.6) by defining Slater determinants

|Ψ(t) >= Uσ◦(t, ti)|χ >;

< Ψ̃(t)| =< χ
′ |Uσ◦(tf , t). (5.10)

The time dependence of the respective single–particle
functions ψi(t), ψ̃i(t) is then governed by

ih̄
∂

∂t
|ψi(t) >= hσ◦(t)|ψi(t) >;

−ih̄ ∂
∂t

< ψ̃i(t)| =< ψ̃i(t)|hσ◦(t) (5.11)

with time boundary conditions

ψi(ti) = χi ; ψ̃i(tf ) = χ′i . (5.12)

For the density operator

ρ =
N∑
i=1

|ψi(t) >< ψ̃i(t)|
< ψ̃i(t)|ψi(t) >

(5.13)

one then immediately confirms (1.7),

ih̄
∂

∂t
ρ = [hσ◦(t), ρ]. (5.14)

Equation (5.14) has to be solved under time–boundary
conditions, at t = ti and tf , rather than as initial value
problem like (1.1), (1.2). Each transition χ→ χ

′
will have

its own mean field, and this allows the method to describe
exclusive reactions in contrast to TDHF which at best can
be used for inclusive reactions. It is also worth noting that
TDMF needs two sets of single–particle wave functions,
ψi(t) and ψ̃i(t), while TDHF is formulated in just one set
which develops from the initial state in the mean field u.

6 Static approximation

On the exact many–body level the connection between the
resolvent and the time–development operator is simply a
Fourier transformation

< χ
′ |(E + iκ−H)−1|χ > (6.1)

= − i
h̄

∞∫
0

dT exp
{
i

h̄
(E + iκ)T

}

× < χ
′ | exp

(
− i
h̄
HT

)
|χ >

for infinitesimal κ > 0 and with χ, χ
′

as initial and final
states. On the mean field level the connection between the
resolvent and time–development operator is more intricate
due to the non–linear nature of self–consistent mean field
methods.
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The basic assumption to be made is that σ(t) and
hence hσ(t) vary slowly in time so that we may approx-
imately neglect their time dependence. In this static ap-
proximation we have from (3.18) and (3.19)

< χ
′ | exp

{
− i
h̄
HT

}
|χ > (6.2)

=
1
N (T )

∫
Dσ exp

{
i

2h̄
(σ · v−1 · σ)T

}
× < χ

′ | exp
{
− i
h̄
hσT

}
|χ >

so that (6.1) reads:

<χ
′ |(E + iκ−H)−1|χ> (6.3)

= − i
h̄

∞∫
0

dT exp
{
i

h̄
(E + iκ)T

}
1
N (T )

∫
Dσ

× exp
{
i

2h̄
(σ · v−1 · σ)T

}
<χ

′ | exp
{
− i
h̄
hσT

}
|χ> .

In N–particle Hilbert space with

hσ =
N∑
m=1

hm(σ), (6.4)

we can use the inverse Fourier transformation on the
single–particle level,

exp
{
− i
h̄

(hm − iκm)T
}

=
i

2π

∞∫
−∞

dwm
exp

{
− i
h̄wmT

}
wm − hm + iκm

with T > 0 (6.5)

for particle m, to obtain an expression for the many–body
resolvent in terms of single–particle resolvents gm = (wm−
hm + iκm)−1

< χ
′ |(E + iκ−H)−1|χ > (6.6)

= − i
h̄

(
i

2π

)N ∞∫
0

dT
1
N (T )

∫
Dσ

∫ ( N∏
m=1

dwm

)

× exp

{
i

h̄
(E + iκ

′ −
∑
m

wm +
1
2
σ · v−1 · σ)T

}

× < χ
′ |

N∏
m=1

(wm − hm + iκm)−1|χ >

with the constraint κ
′

= κ −
∑
m
κm > 0 to ensure the

existence of the T–integral.
The product of single–particle operators in (6.6) acting

on the Slater determinant χ (to the right or on χ
′

to the
left) gives (

N∏
m=1

gm

)
A|χ1χ2...χN >

= A|(g1χ1)(g2χ2)...(gNχN ) > (6.7)

since the antisymmetrizer A commutes with the symmet-
rical product

∏
m
gm. Equation (6.7) suggests to introduce

two sets of single–particle wave functions

| ϕm >= gm | χm > ; < ϕ
′

m |=< χ
′

m | gm (6.8)

or equivalently

(wm − h) | ϕm(σ,wm) >=| χm >;

< ϕ
′

m(σ,wm) | (wm − h) =< χ
′

m | . (6.9)

Note that on the single–particle level we may now drop
the label m on the Hamiltonian h being the same for all
(identical!) particles. In this representation

< χ
′ |(E + iκ−H)−1|χ >

= − i
h̄

(
i

2π

)N ∞∫
0

dT

∫
Dσ

∫ (∏
m

dwm

)
1
N (T )

× exp
{
i

h̄
S [σ,wm, T ]

}
(6.10)

with

S =

(
E + iκ

′
+

1
2
σ · v−1 · σ −

∑
m

wm

)
T

− ih̄
∑
m

ln < χ
′

m | ϕm > . (6.11)

In the last term in (6.11) we can replace < χ
′
m | ϕm >

by < ϕ
′
m | χm > using the bra– rather than the ket–

equation in (6.8). In both versions we assume, with the
same arguments as in Sect. 2, that the overlap matrices
< χ

′
m | ϕn > and < ϕ

′
m | χn > are chosen diagonal. (6.5)

and (6.8), (6.9) establish a Fourier transformation on the
single–particle level between ψm(T ) and ϕm(wm):

|ψm(T ) > = exp
{
− i
h̄

(h− iκm)T
}
|χm >

=
i

2π

∞∫
−∞

dwm
exp

{
− i
h̄wmT

}
wm − h− iκm

|χm >

=
i

2π

∞∫
−∞

dwm exp
{
− i
h̄
wmT

}
|ϕm(wm) > .

(6.12)

Equations (6.9) have, apart from the normalization fac-
tors λi, λ

′
i, the formal structure of (2.7). However, ener-

gies wm were introduced as real variables in contrast to
the complex ηi of (2.7), and h in (6.9) is defined in terms
of the σ–fields rather than through ϕm, ϕ

′
m. Only after

we have solved all integrations of (6.10) in SPA, we will
recover the inhomogeneous TIMF eqs. (2.7) together with
the correct value of the resolvent matrix element (2.9).
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7 Path and energy integrals

These integrals will be solved simultaneously in SPA, fol-
lowed by the T–integration. While the energies wm and
auxiliary fields σαγ are introduced as real, independent
variables, their stationary values will be complex and
coupled through self–consistency.

The stationarity equations with respect to σ and wm
read:

δS

δσ
= Tσ · v−1 − ih̄

N∑
m=1

< χ
′
m | δ

δσ | ϕm >

< χ′m | ϕm >
= 0 (7.1)

∂S

∂wn
= −T − ih̄

N∑
m=1

< χ
′
m | ∂

∂wn
| ϕm >

< χ′m | ϕm >
= 0. (7.2)

The above derivatives of ϕm can be calculated with the
help of (6.9): Multiplying

(wm − h)
δ

δσ
| ϕm > − δh

δσ
| ϕm >= 0 (7.3)

by < ϕ
′
m | gives, with h from (3.19),

< χ
′

m |
δ

δσ
| ϕm >=< ϕ

′

m | ρ | ϕm > . (7.4)

Explicitly:

< χ
′

m |
δ

δσαγ
| ϕm > = < ϕ

′

m | a†αaγ | ϕm >

= < ϕ
′

m | α >< γ | ϕm > .(7.5)

Derivatives of (6.9) with respect to wn give

δnm

{
| ϕm > +(wm − h)

∂

∂wn
| ϕm >

}
= 0. (7.6)

Multiplying by < ϕ
′
m | and using again (6.9) leads to

< χ
′

m |
∂

∂wn
| ϕm >= −δmn < ϕ

′

m | ϕm > . (7.7)

We insert relations (7.4) and (7.7) into (7.1) and (7.2)
to find the explicit stationarity equations. The stationary
value of σ is given by

σ◦ · v−1 =
ih̄

T

∑
m

< ϕ
′
m | ρ | ϕm >

< χ′m | ϕm >
(7.8)

or

σ◦ =
ih̄

T

∑
m

< ϕ
′
m | ρ | ϕm > · v
< χ′m | ϕm >

. (7.9)

Explicitly with labels of single–particle states

σ◦αγ =
ih̄

T

∑
m
β,δ

< ϕ
′
m | β >< δ | ϕm >

< χ′m | ϕm >
vβαδγ

=
ih̄

T

∑
m

< ϕ
′
mα | v | ϕmγ >
< χ′m | ϕm >

(7.10)

using the completeness of single–particle states β, δ refer-
ring to the representation (3.5) of the Hamiltonian H. The
stationary value w◦m is determined implicitly through

< ϕ
′
m | ϕm >

< χ′m | ϕm >
= − i

h̄
T (7.11)

or, using (6.9) again, explicitly by

ih̄

T
=
< χ

′
m | ϕm >

< ϕ′m | ϕm >
=
< ϕ

′
m | (w◦m − h) | ϕm >

< ϕ′m | ϕm >

= w◦m − ε◦m (7.12)

with

ε◦m =
< ϕ

′
m | h(σ◦) | ϕm >

< ϕ′m | ϕm >
. (7.13)

After T–integration in Sect. 8, E rather than T−1 will ap-
pear in relation (7.12). Combining (7.10) and (7.11) iden-
tifies σ◦ as Hartree–Fock field,

σ◦αγ =
N∑
m=1

< ϕ
′
mα | v | ϕmγ >
< ϕ′m | ϕm >

, (7.14)

since according to Sect. 4 the matrix v is assumed to be
antisymmetrized. A slight modification of (4.3) also allows
to eliminate the unphysical self interaction in (3.6) so that
K reduces to the kinetic energy operator.

The normalization factors in (6.10), N (T ) and
(i/2π)N , are eliminated by the Gauss correction to the
lowest order SPA which approximates the integrals by
the integrand taken at the stationary point (σ◦, w◦). The
Gauss correction to the σ–integral,(

det
(

δ2S

δσδσ′

)
σ◦

)− 1
2

=
(
det(Tv−1)

)− 1
2 , (7.15)

cancels N (T ) according to (3.14), if the σ–dependence of
the ln–term in (6.11) is neglected. This ln–term carries
a factor h̄ as compared to the leading term. Hence the
above assumption is justified in semi–classical approxima-
tion. For the Gauss correction to the w–integration, each
integral can be treated separately as the integrand factor-
izes. From (7.2) and (7.7), together with (6.9) and (7.12),
it follows that the leading term in the second derivative of
S with respect to wm is given by(

∂2S

∂w2
m

)
w◦m

=
i

h̄
T 2, (7.16)

and the total correction factor is√∏
m

(
2πih̄

S′′(wm)

)
w◦m

=
(√

2π
h̄

T

)N
. (7.17)

The correction to (7.16) involves fluctuations of the single–
particle propagators which go beyond the mean field con-
cept.
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To this order the matrix element (6.10) of the resolvent
reads

D(E + iκ) =< χ
′ |(E + iκ−H)−1|χ >

= − i
h̄

(
e√
2π

)N ∞∫
0

dT

(
ih̄

T

)N

× exp

{
i

h̄

(
E +

1
2
σ◦ · v−1 · σ◦ −

∑
m

ε◦m + iκ
′

)
T

}
× < χ

′ | φ >, (7.18)

after replacing w◦m by ε◦m according to (7.12). With
e/
√

2π = 1.084..., the normalization factor (i/2π) is not
exactly cancelled by the Gaussian correction. However,
this is just a constant, real factor which does not harm
the analytical properties of the resolvent.

8 T–integration

With regard to SPA, we extend the range of integration
for T to −∞, introducing the step function in its integral
representation,

Θ(T ) =
1

2πi

∞∫
−∞

ds
e
i
h̄ sT

s− iκ′′ for κ
′′
> 0. (8.1)

Then, with e/
√

2π ≈ 1, we have

D(E + iκ) =
1

2πh̄

∞∫
−∞

dT

∞∫
−∞

ds exp
{
i

h̄
S[s, T ]

}
(8.2)

with

S[s, T ] =

(
E +

1
2
σ◦ · v−1 · σ◦ −

∑
m

ε◦m + s+ iκ
′

)
T

− ih̄
∑
m

ln < χ
′

m | ϕm >

− ih̄N ln
(
ih̄

T

)
+ ih̄ ln(−s+ iκ

′′
). (8.3)

Simultaneous SPA to both integrals gives as stationarity
equations

∂S

∂s
= T +

ih̄

s− iκ′′ = 0 or − s◦ =
ih̄

T◦
(8.4)

and

∂S

∂T
= E +

1
2
σ◦ · v−1 · σ◦ −

∑
m

ε◦m + s+ iκ
′

= 0 (8.5)

or − s◦ = E +
1
2
σ◦ · v−1 · σ◦ −

∑
m

ε◦m

where κ
′
, κ
′′

are now superfluous. (8.5) is exact though
it looks as if in (8.3) only the term proportional to T

had been taken into account. The contributions from the
remaining terms cancel exactly by virtue of (6.9).

For the Gauss correction to the lowest order SPA of the
T– and s–integrals, one has to calculate the Hesse–matrix
M of S with respect to T and s since S is not additive in
the variables T and s. One finds

M =
(

0 1
1 i
h̄T

2
◦

)
(8.6)

with
∂2S

∂T 2
= 0 (8.7)

in semi–classical approximation. Hence detM = −1, and
the Gauss correction factor for the T– and s–integrations
is
√
−(2πh̄i)2 = 2πh̄, which cancels the corresponding

factor in (8.2). To this order of SPA we have

D(E + iκ) = exp
{
i

h̄
S[T◦, s◦]

}
=
(
ih̄

T◦

)N−1

< χ
′ |φ >(8.8)

=

(
E +

1
2
σ◦ · v−1 · σ◦ −

∑
m

ε◦m

)N−1

< χ
′ |φ >,

with φ = φ(σ◦, w◦m). The same result is obtained follow-
ing an alternative line of reasoning: In the above semi–
classical approximation, with S linear in T and derivative
∂S/∂T = E+ 1

2σ
◦·v−1·σ◦−

∑
m
ε◦m+s independent of T , the

T–integral reduces to a δ–distribution,

1
2πh̄

∞∫
−∞

dT exp

{
i

h̄

(
E +

1
2
σ◦ · v−1 · σ◦ −

∑
m

ε◦m + s
)
T

}

= δ

(
E +

1
2
σ◦ · v−1 · σ◦ −

∑
m

ε◦m + s

)
. (8.9)

With (ih̄/T ) from the stationarity condition (8.4), the re-
maining s–integral can then be solved exactly,

∞∫
−∞

ds

δ

(
E + 1

2σ
◦ · v−1 · σ◦ −

∑
m
ε◦m + s

)
−s (−s)N <χ

′ |φ>

= (−s◦)N−1 <χ
′ |φ> (8.10)

with s◦ from (8.5), in complete agreement with (8.8).

9 Conclusions

With σ◦ from stationarity condition (7.14), the single–
particle Hamiltonian h(σ◦), (3.19), has precisely the struc-
ture of h of Sect. 2 with expectation value

ε◦m =
< ϕ

′
m | (t+ σ◦) | ϕm >

< ϕ′m | ϕm >
=
< ϕ

′
m | (t+ u) | ϕm >

< ϕ′m | ϕm >
.

(9.1)
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Table 1. Mean Field Methods for Reactions

Time–Dependent Time–Independent

Basic quantity

< χ′ | exp{− i
h̄

(tf − ti)H} | χ >
Fourier

⇐⇒
Transformation

< χ′ | (E −H)−1 | χ >

Mean Field Approximation
wwwÄ wwwÄ

TDHF
restriction of χ′

⇐=
|χ′>=Uh(tf−ti)|χ>

TDMF
static

=⇒
approximation

TIMF

Equation of motion

[h, ρ] = ih̄ρ̇ [h, ρ] = ih̄ρ̇ [h, ρ] = η(ρχ′ − ρχ)
to be solved for given

ρ(ti) ρ(ti), ρ(tf ) χ, χ′

Type of problem

initial boundary inhomogeneous problem
condition problem in t: parametric in E:

”local” ”non–local” ”local”

Representation of density ρ in basis

| ψm(t) > | ψm(t) >,< ψ̃m(t) | | ϕm >,< ϕ′m |
orthogonal biorthogonal biorthogonal

Single–particle Hamiltonian h

Hermitian non–Hermitian non–Hermitian

Specification of asymptotic channels

no yes yes

Reactions described

inclusive exclusive exclusive

From (7.8), (7.11) and (7.14) one finds

1
2
σ◦ · v−1 · σ◦ =

1
2

∑
m

< ϕ
′
m | σ◦ | ϕm >

< ϕ′m | ϕm >

=
1
2

∑
m,n

< ϕ
′
mϕ

′
n | v | ϕmϕn >

< ϕ′m | ϕm >< ϕ′n | ϕn >
(9.2)

so that with (7.12), (8.4) and (8.5)

E +
1
2
σ◦ · v−1 · σ◦ −

∑
m

ε◦m = E − < φ
′ | H | φ >

< φ′ | φ >

= η = w◦m − ε◦m =
ih̄

T◦
, (9.3)

and we can identify the (complex) stationary value w◦m
with ηm of eq. (2.8). Hence (6.9) and (2.7) differ only by

factors λi, λ
′
i and we have to identify

ϕm(σ◦, w◦m) =
ϕm
λm

; ϕ
′

m(σ◦, w◦m) =
ϕ
′
m

λ′m
. (9.4)

We make now use of (2.13) to obtain the final result for
(8.8)

D(E + iκ) =< χ
′ |φ >=< φ

′ |χ > (9.5)

which fully agrees with equation (2.9) for the station-
ary value of functional F in the TIMF–method. In sum-
mary we can state that we have derived the inhomoge-
neous single–particle equations and the stationary value of
the Green function of the TIMF–method from the TDMF
in static, semi–classical approximation, with the Gauss–
correction to the lowest order SPA taken into account.

Under various conceptual and practical criteria, TIMF
can be placed between TDMF and TDHF (see also Table
1): Both TDMF and TIMF methods calculate a mean
field for each transition χ → χ

′
. Hence the respective
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transition amplitudes and resolvent matrix elements re-
fer to exclusive reactions, while TDHF is applicable to in-
clusive reactions only. TDMF is conceptually superior to
TIMF, the latter being a static approximation of the for-
mer method. Alternately put, TIMF is ”local” in energy
whereas TDMF is ”non–local” in time. From the practi-
cal point of view, TIMF requires solving inhomogeneous,
complex equations of Hartree–Fock type for given energy.
In this respect it is comparable to TDHF which is ”lo-
cal” in time. The problem of TDMF lies in combining
self–consistency with given boundary conditions in time.
No practicable algorithm for this highly ”non–local” prob-
lem seems to exist for use in actual numerical calculations.
The practical advantage of TIMF becomes even more pro-
nounced when considering the S–matrix. TDMF then has
to calculate three auxiliary fields rather than one [2, 3]
while the corresponding T–matrix of TIMF [6, 7] is ob-
tained again from inhomogeneous, complex equations of
Hartree–Fock type as for the above resolvent, with only
slight generalization of the inhomogeneities.
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